This paper introduces the design and development of a new robotic system to assist surgeons performing ophthalmic surgeries. The robot itself is very compact and similar to an average human hand in size. Its primary application is intraocular micromanipulation in order to overcome the existing challenges in treatment of diseases like Retinal Vein Occlusion (RVO). The novel hybrid mechanism designed for this robot allows microscale motions and is stable in the presence of vibrations common in operation room (OR). The robotic system can be easily integrated into standard operation rooms and does not require modification of conventional surgical tools. This compact microsurgical system is suitable for mounting on the patient's head and thereby, solves the problem of patient motion. The compatibility of the robotic system with a real world surgical setup was evaluated and confirmed in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6610840 | DOI Listing |
NPJ Sci Learn
January 2025
Department of Educational Sciences, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Potsdam, Germany.
Rising interest in artificial intelligence in education reinforces the demand for evidence-based implementation. This study investigates how tutor agents' physical embodiment and anthropomorphism (student-reported sociability, animacy, agency, and disturbance) relate to affective (on-task enjoyment) and cognitive (task performance) learning within an intelligent tutoring system (ITS). Data from 56 students (M = 17.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic.
Background And Purpose: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization.
Materials And Methods: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the status and histologic grade of adult-type diffuse gliomas.
Mov Disord
January 2025
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
Background: Quantitative evidence of levodopa-induced beneficial effects on parkinsonian rigidity in Parkinson's disease (PD) is lacking. Recent research has demonstrated the velocity-dependent nature of objective rigidity in PD and revealed its neural underpinning.
Objective: The present study aimed to examine the effect of levodopa on objective rigidity in PD.
Patterns (N Y)
December 2024
Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
December 2024
Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, U.S.A.
Purpose: To determine the relationship between cam morphology of the hip and ipsilateral sacroiliac motion compared to the native hip in a cadaveric model.
Methods: A simulated cam state was created using a 3-dimensional printed cam secured to the head-neck junction of 5 cadaveric hips. Hips were studied using a computed tomography-based optic metrology system and a 6 degree-of-freedom robot to exert an internal rotation torque at 3 different torque levels (6 N-m, 12 N-m, 18 N-m).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!