Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using more than one classification stage and exploiting class population imbalance allows for incorporating powerful classifiers in tasks requiring large scale training data, even if these classifiers scale badly with the number of training samples. This led us to propose a two-stage classifier for segmenting tibial cartilage in knee MRI scans combining nearest neighbor classification and support vector machines (SVMs). Here we apply it to femoral cartilage segmentation. We describe the similarities and differences between segmenting these two knee cartilages. For further speeding up batch SVM training, we propose loosening the stopping condition in the quadratic program solver before considering moving on to other approximation techniques such as online SVMs. The two-stage approach reached a higher accuracy in comparison to the one-stage state-of-the-art method. It also achieved better inter-scan segmentation reproducibility when compared to a radiologist as well as the current state-of-the-art method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6610787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!