Pneumonia kills over 1,800,000 children annually throughout the world. Prompt diagnosis and proper treatment are essential to prevent these unnecessary deaths. Reliable diagnosis of childhood pneumonia in remote regions is fraught with difficulties arising from the lack of field-deployable imaging and laboratory facilities as well as the scarcity of trained community healthcare workers. In this paper, we present a pioneering class of enabling technology addressing both of these problems. Our approach is centered on automated analysis of cough and respiratory sounds, collected via microphones that do not require physical contact with subjects. We collected cough sounds from 91 patients suspected of acute respiratory illness such as pneumonia, bronchiolitis and asthma. We extracted mathematical features from cough sounds and used them to train a Logistic Regression classifier. We used the clinical diagnosis provided by the paediatric respiratory clinician as the gold standard to train and validate our classifier against. The methods proposed in this paper could separate pneumonia from other diseases at a sensitivity and specificity of 94% and 75% respectively, based on parameters extracted from cough sounds alone. Our method has the potential to revolutionize the management of childhood pneumonia in remote regions of the world.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610724DOI Listing

Publication Analysis

Top Keywords

cough sounds
12
childhood pneumonia
8
pneumonia remote
8
remote regions
8
pneumonia
6
cough
5
cough sound
4
sound analysis
4
analysis tool
4
tool diagnosing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!