A study relating signal patterns of burst onsets in burst suppression EEG to the anesthetic agent or anesthesia induction protocol is presented. A dataset of 82 recordings of sevoflurane, isoflurane and desflurane anesthesia underlies the study. 3 second segments from the onset of altogether 3214 bursts are described using AR model parameters, spectral entropy and sample entropy as features. The features are clustered using the K-means algorithm. The results indicate that no clear cut distinction can be made between the burst patterns induced by the mentioned anesthetics although bursts of certain properties are more common in certain patient groups. Several directions for further investigations are proposed based on visual inspection of the recordings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6610691 | DOI Listing |
Med Biol Eng Comput
January 2025
School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Engineering, Qufu Normal University, Rizhao, China.
Brain-computer interfaces (BCIs) have garnered significant research attention, yet their complexity has hindered widespread adoption in daily life. Most current electroencephalography (EEG) systems rely on wet electrodes and numerous electrodes to enhance signal quality, making them impractical for everyday use. Portable and wearable devices offer a promising solution, but the limited number of electrodes in specific regions can lead to missing channels and reduced BCI performance.
View Article and Find Full Text PDFAppl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFClin EEG Neurosci
January 2025
Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, India.
Motor Imagery (MI) electroencephalographic (EEG) signal classification is a pioneer research branch essential for mobility rehabilitation. This paper proposes an end-to-end hybrid deep network "Spatio Temporal Inception Transformer Network (STIT-Net)" model for MI classification. Discrete Wavelet Transform (DWT) is used to derive the alpha (8-13) Hz and beta (13-30) Hz EEG sub bands which are dominant during motor tasks to enhance the performance of the proposed work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!