Pressure ulcers are skin injuries caused by long term exposition to high pressures on support points that interrupt blood circulation reducing the transport of oxygen and nutrients to the cells. They mainly affect people with poor mobility that stay in seating position for long periods of time. In spite of the diversity of commercial prototypes of cushions, ulcers caused by pressure are still a problem for wheelchair users. This work describes the design of a measurement system of pressure distribution in sedentary position. The aim of the system is to record the pressure concentration in order to obtain specific information about the supporting areas, and with these data used as feedback, eventually to determine an efficient random stimulation sequence to provide, in the future, a system to prevent these referred injuries. The proposed system consists of a 12 air-cell division cushion. Each cell has a pressure sensor and an input for electro valves to inflate and deflate. The recording and control of the valves is carried out through a graphical interface designed in LabVIEW®. A calibration procedure for the designed cushion was made by comparing the greatest load values pressure with a commercial platform, similar results were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610609DOI Listing

Publication Analysis

Top Keywords

pressure distribution
8
measurement system
8
supporting areas
8
wheelchair users
8
pressure
7
system
5
distribution measurement
4
system supporting
4
areas wheelchair
4
users pressure
4

Similar Publications

A new centrifugal hypergravity piston cylinder apparatus.

Rev Sci Instrum

January 2025

Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China.

Hypergravity high-temperature and high-pressure experiments are a powerful tool for studying geological processes over long periods. A new centrifugal hypergravity piston cylinder apparatus has been developed for beam centrifuge. The unique design of this centrifugal hypergravity piston cylinder apparatus is that the hydraulic system and the press are relatively independent.

View Article and Find Full Text PDF

Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.

View Article and Find Full Text PDF

Olfactory impairment in Italian patients with chronic rhinosinusitis with nasal polyps: a patient-centered survey.

Front Allergy

January 2025

Unit of Otorhinolaryngology-Head and Neck Department, ASST Sette Laghi, Varese and UPLOAD (Upper and Lower Airways Diseases) Research Centre, University of Insubria, Varese, Italy.

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory condition characterized by persistent nasal obstruction, discharge, facial pressure, and olfactory dysfunction. CRSwNP significantly impairs quality of life (QoL), with olfactory loss being a particularly distressing symptom that affects food enjoyment, personal safety, and social interactions.

Methods: This study investigated the experiences of Italian patients with CRSwNP.

View Article and Find Full Text PDF

A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely.

View Article and Find Full Text PDF

[Prediction of potential geographic distribution of in Yunnan Province using random forest and maximum entropy models].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

December 2024

Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan 671000, China.

Objective: To predict the potential geographic distribution of in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into surveillance and control in Yunnan Province.

Methods: The snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!