This paper further investigates the use of Doppler radar for detecting and identifying certain human respiratory characteristics from observed frequency and phase modulations. Specifically, we show how breathing frequencies can be determined from the demodulated signal leading to identifying abnormalities of breathing patterns using signal derivatives, optimal filtering and standard statistical measures. Specifically, we report results on a robust method for distinguishing cessation of the normal breathing cycle. The proposed approach can have potential application in the management of sudden infant death syndrome(SIDS) and sleep apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610380DOI Listing

Publication Analysis

Top Keywords

doppler radar
8
applications doppler
4
radar non-contact
4
non-contact respiratory
4
respiratory assessment
4
assessment paper
4
paper investigates
4
investigates doppler
4
radar detecting
4
detecting identifying
4

Similar Publications

Gesture recognition technology based on millimeter-wave radar can recognize and classify user gestures in non-contact scenarios. To address the complexity of data processing with multi-feature inputs in neural networks and the poor recognition performance with single-feature inputs, this paper proposes a gesture recognition algorithm based on esNet ong Short-Term Memory with an ttention Mechanism (RLA). In the aspect of signal processing in RLA, a range-Doppler map is obtained through the extraction of the range and velocity features in the original mmWave radar signal.

View Article and Find Full Text PDF

Remote Radio Frequency Sensing Based on 5G New Radio Positioning Reference Signals.

Sensors (Basel)

January 2025

Institute of Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.

In this paper, the idea of a radar based on orthogonal frequency division multiplexing (OFDM) is applied to 5G NR Positioning Reference Signals (PRS). This study demonstrates how the estimation of the communication channel using the PRS can be applied for the identification of objects moving near the 5G NR receiver. In this context, this refers to a 5G NR base station capable of detecting a high-speed train (HST).

View Article and Find Full Text PDF

Human activity recognition by radar sensors plays an important role in healthcare and smart homes. However, labeling a large number of radar datasets is difficult and time-consuming, and it is difficult for models trained on insufficient labeled data to obtain exact classification results. In this paper, we propose a multiscale residual weighted classification network with large-scale, medium-scale, and small-scale residual networks.

View Article and Find Full Text PDF

In shooting incident reconstructions, forensic examiners usually deal with scenes involving short-range trajectories, typically ≤30 m. In situations such as this, a linear trajectory reconstruction model is appropriate. However, a forensic expert can also be asked to estimate a shooter's position by reconstructing a long-range trajectory where the bullet's path becomes arced as a result of gravity and the greater time in flight.

View Article and Find Full Text PDF

Frequency-modulated continuous-wave (FMCW) radar is used to extract range and velocity information from the beat signal. However, the traditional joint range-velocity estimation algorithms often experience significant performances degradation under low signal-to-noise ratio (SNR) conditions. To address this issue, this paper proposes a novel approach utilizing the complementary ensemble empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) to reconstruct the beat signal prior to applying the FFT-Root-MUSIC algorithm for joint range and velocity estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!