Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes a robust multiobjective evolutionary algorithm (MOEA) to optimize parameters of tumor segmentation for ultrasound breast images. The proposed algorithm employs efficient schemes for reinforcing proximity to Pareto-optimal and diversity of solutions. They are designed to solve multiobjective problems for segmentation accuracy and speed. First objective is evaluated by difference between the segmented outline and ground truth. Second objective is evaluated by elapsed time during segmentation process. The experimental results show the effectiveness of the proposed algorithm compared with conventional MOEA from the viewpoint of proximity to the Pareto-optimal front (improved by 16.4% and 12.4%). Moreover, segmentation results of proposed algorithm describe faster segmentation speed (1.97 second) and higher accuracy (8% Jaccard).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6610334 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!