Stimulation of biological neurons using electrical charges has gained popularity in neuro-engineering studies. Wireless power delivery to electrical stimulators is an essential requirement for long term and maintenance-free implantable applications. Voltage compliance is often a limiting factor in these systems. We present an inductively powered biphasic stimulator that is capable of exhibiting 24 Vpp load voltage compliance, while harvesting up to 13 V. The stimulator can deliver currents ranging from 10 µA to 6 mA. The inductive energy harvesting system operates at a low carrier frequency of 134.2 KHz for enhanced depth of penetration in biological medium. The near-field harvester works reliably for up to 50 mm inter-antenna distance. Noise performance and charge balancing accuracy have also been improved due to the absence of a boost switching circuit and floating current source based architecture. In-vivo motor and visual cortex stimulations have been performed using epi-dural screw electrodes on an awake behaving and anesthetized Wister rat.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610232DOI Listing

Publication Analysis

Top Keywords

biphasic stimulator
8
inductively powered
8
voltage compliance
8
vpp compliant
4
compliant biphasic
4
stimulator inductively
4
powered animal
4
animal behavior
4
behavior studies
4
studies stimulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!