Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a navigation system for minimally invasive surgery, especially laparoscopic surgery in which operates in abdomen. Conventional navigation systems show virtual images by superimposing models of target tissues on real endoscopic images. Since soft tissues within the abdomen are deformed during the surgery, the navigation system needs to provide surgeons reliable information by deforming the models according to their biomechanical behavior. However, conventional navigation systems don't consider the tissue deformation during the surgery. We have been developing a new real-time FEM-based simulation for deforming a soft tissue model by using neural network[1]. The network is called the neuroFEM. The incorporation of the neuroFEM into the navigation leads to improve the accuracy of the navigation system. In this paper, we propose a new navigation system with a framework of the neuroFEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6610170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!