This paper presents the classification of motor tasks, using surface electromyography (sEMG) to control a virtual prosthetic hand for rehabilitation of amputees. Two types of classifiers are compared: k-Nearest Neighbor (k-NN) and Bayesian (Discriminant Analysis). Motor tasks are divided into four groups correlated. The volunteers were people without amputation and several analyzes of each of the signals were conducted. The online simulations use the sliding window technique and for feature extraction RMS (Root Mean Square), VAR (Variance) and WL (Waveform Length) values were used. A model is proposed for reclassification using cross-validation in order to validate the classification, and a visualization in Sammon Maps is provided in order to observe the separation of the classes for each set of motor tasks. Finally, the proposed method can be implemented in a computer interface providing a visual feedback through an virtual hand prosthetic developed in Visual C++ and MATLAB commands.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6609899DOI Listing

Publication Analysis

Top Keywords

motor tasks
12
feature extraction
8
virtual hand
8
extraction classification
4
classification semg
4
semg signals
4
signals applied
4
applied virtual
4
hand prosthesis
4
prosthesis paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!