Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the first fundamental step toward further improving the Laplacian estimation of the novel multipolar concentric ring electrodes by proposing a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. Examples of using the proposed approach to estimate the Laplacian for the cases of tripolar and, for the first time, quadripolar concentric ring electrode are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6609793DOI Listing

Publication Analysis

Top Keywords

concentric ring
20
laplacian estimation
12
ring electrodes
12
improving laplacian
8
estimation novel
8
novel multipolar
8
multipolar concentric
8
ring electrode
8
concentric
5
ring
5

Similar Publications

Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.

Neuroimage

January 2025

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA. Electronic address:

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Portable astronomical observation system based on large-aperture concentric-ring metalens.

Light Sci Appl

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtzplatz 1, Eggenstein-Leopoldshafen, 76344, Germany.

The core advantage of metalenses over traditional bulky lenses lies in their thin volume and lightweight. Nevertheless, as the application scenarios of metalenses extend to the macro-scale optical imaging field, a contradiction arises between the increasing demand for large-aperture metalenses and the synchronous rise in design and processing costs. In response to the application requirements of metalens with diameter reaching the order of 10λ or even 10λ, this paper proposes a novel design method for fixed-height concentric-ring metalenses, wherein, under the constraints of the processing technology, a subwavelength 2D building unit library is constructed based on different topological structures, and the overall cross-section of the metalens is assembled.

View Article and Find Full Text PDF

Relationship Between Short-Term Blood Pressure Variability and Choroidal-Retinal Thicknesses Assessed by Optical Coherence Tomography in Hypertensive Subjects.

J Pers Med

November 2024

Unit of Nephrology and Dialysis, Hypertension Excellence Centre, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Università di Palermo, 90128 Palermo, Italy.

The complications of hypertension depend not only on the mean blood pressure (BP) but also on its variability (BPV). Recent studies suggest that the choroid may serve as an indicator of systemic vascular damage. These studies have been made possible by the increased availability of optical coherence tomography (OCT).

View Article and Find Full Text PDF

Fluorescence emission regulation is of great interest for its promising applications in various fields such as microscopy, chemical analysis, encryption, and sensing. Most studies focus on the regulation of the fluorescence emission process. However, the spectral separation of excitation and emission of fluorophores requires careful design of resonances to cover both emission and excitation wavelengths, which is a better choice to enhance fluorescence intensity.

View Article and Find Full Text PDF

Deuterium metabolic imaging (DMI) is an emerging Magnetic Resonance technique providing valuable insight into the dynamics of cellular glucose (Glc) metabolism of the human brain in vivo using deuterium-labeled (H) glucose as non-invasive tracer. Reliable concentration estimation of H-Glc and downstream synthesized neurotransmitters glutamate + glutamine (Glx) requires accurate knowledge of relaxation times, but so far tissue-specific T and T relaxation times (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!