It has been shown that study of immunopathological component in acute pneumonias is of value. Such an approach has demonstrated that in the course of the disease there form immune complexes (IC), which absorb complement and are of importance for the disease pathogenesis, and tissue immune complexes which do not absorb complement. Formation of anticomplement IC in acute pneumonias is in a good agreement with a reduction in blood serum complement level with a concurrent change in these indicators in the lungs. The demonstration of anticomplement IC in patients with acute pneumonia has a prognostic value. The stay at hospital of the patients who demonstrated IC at the very beginning of the disease was 2.5 times longer because of the lack of the process normalization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

immune complexes
12
complement level
8
acute pneumonias
8
complexes absorb
8
absorb complement
8
[circulating immune
4
complement
4
complexes complement
4
level children
4
acute
4

Similar Publications

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.

View Article and Find Full Text PDF

Background: Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake.

Methods And Results: In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.

View Article and Find Full Text PDF

Background/objectives: Adenoviral vector-based vaccines against COVID-19 rarely cause vaccine-induced immune thrombocytopenia and thrombosis (VITT), a severe adverse reaction caused by IgG antibodies against platelet factor 4 (PF4). To study VITT, patient samples are crucial but have become a scarce resource. Recombinant antibodies (rAbs) derived from VITT patient characteristic amino acid sequences of anti-PF4 IgG are an alternative to study VITT pathophysiology.

View Article and Find Full Text PDF

Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody.

Biosensors (Basel)

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China.

Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!