We proposed a new method to measure swallowing in this study. A flexible polymer sensor was used to measure human swallowing. Electromyogram (EMG) of suprahyoid muscles were measured as a reference of swallowing. We also developed a measurement system for the flexible polymer sensor, which consists of two measurement circuits; the 1(st) one measures the voltage of flexible polymer sensor, and the 2(nd) one EMG of suprahyoid muscles. We conducted measurement experiments focused on human swallowing to confirm the ability of this sensor. At the experiment one subject was asked to sit in three different postures and to drink a cup of water. Results show that human swallowing can be detected by this flexible polymer sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6609574DOI Listing

Publication Analysis

Top Keywords

flexible polymer
20
polymer sensor
20
human swallowing
12
emg suprahyoid
8
suprahyoid muscles
8
sensor
6
flexible
5
polymer
5
swallowing
5
measurement
4

Similar Publications

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

The Selective Metallization Technique shows promise for roll-to-roll in-line patterning of flexible electronics using evaporated metals, but challenges arise when applied to sputtering functional materials. This study overcomes these challenges with simultaneous sputtering of Bi-Sb-Te and evaporation of metal (Ag or Cu) for thermoelectric layers when using Selective Metallization Technique. Large-scale manufacturing is demonstrated through roll-to-roll processing of a 0.

View Article and Find Full Text PDF

The nanoengager strategy, which enhances receptor signaling responsiveness through a multivalent ligand binding mode, offers a promising approach for improving immune cell redirecting therapy. Increasing nanomaterial platforms have been developed for constructing more flexible and multifunctional nanoengagers, but the different mediating mechanisms from their multivalent nanostructures, compared to original monomolecule engagers, have rarely been discussed. Here, we constructed dual-specificity T cell nanoengagers (TNEs) targeting CD3 and PDL1 receptors based on a polyethylene glycol--polylactic acid (PEG--PLA)-assembled nanoparticle and specifically studied the impact of surface antibody valences on their functional mechanisms, thereby enhancing the structural advantages of TNEs against solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!