Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6609552DOI Listing

Publication Analysis

Top Keywords

network properties
12
effects streamline-based
8
streamline-based fiber
8
fiber tractography
8
matrix scaling
8
brain connective
8
network
8
connective network
8
graph theory
8
investigating effects
4

Similar Publications

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.

View Article and Find Full Text PDF

Clustering time-evolving networks using the spatiotemporal graph Laplacian.

Chaos

January 2025

School of Mathematical & Computer Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom.

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters.

View Article and Find Full Text PDF

The topology of a chaotic attractor in the Kuramoto-Sivashinsky equation.

Chaos

January 2025

Emergent Complexity in Physical Systems Laboratory (ECPS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

The Birman-Williams theorem gives a connection between the collection of unstable periodic orbits (UPOs) contained within a chaotic attractor and the topology of that attractor, for three-dimensional systems. In certain cases, the fractal dimension of a chaotic attractor in a partial differential equation (PDE) is less than three, even though that attractor is embedded within an infinite-dimensional space. Here, we study the Kuramoto-Sivashinsky PDE at the onset of chaos.

View Article and Find Full Text PDF

Analysis of intestinal bacterial carboxylesterase-mediated metabolites and the potential antitumour molecular mechanism of angoroside C.

J Asian Nat Prod Res

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.

Angoroside C (AgrC) is a compound with many pharmacological properties. However, its antitumour potential has not been well studied. The low bioavailability of AgrC suggests a strong link to gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!