In biomedical and epidemiological studies, often outcomes obtained are of mixed discrete and continuous in nature. Furthermore, due to some technical inconvenience or else, continuous responses are censored and also a few covariates cease to be observed completely. In this paper, we develop a model to tackle these complex situations. Our methodology is developed in a more general framework and provides a full-scale robust analysis of such complex models. The proposed robust maximum likelihood estimators of the model parameters are resistant to potential outliers in the data. We discuss the asymptotic properties of the robust estimators. To avoid computational difficulties involving irreducibly high-dimensional integrals, we propose a Monte Carlo method based on the Metropolis algorithm for approximating the robust maximum likelihood estimators. We study the empirical properties of these estimators in simulations. We also illustrate the proposed robust method using clustered data on blood sugar content from a clinical trial of individuals who were investigated for diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0962280213503924 | DOI Listing |
Arch Toxicol
January 2025
Cosmetics Europe, Brussels, Belgium.
Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for System Dynamics, University of Stuttgart, Waldburgstr. 19, 70563, Stuttgart, Germany.
Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India.
As India's population grows and urbanization accelerates, energy demand is increasing sharply while conventional sources fall behind. To tackle energy shortages and climate change, India must prioritize renewable energy sources (RES), which offer sustainable solutions. The country is rich in RES, which can enhance fuel mix for electricity generation.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!