Background: The mechanisms by which inhaled anesthetics cause neurotoxicity are not well clarified. Exposure to inhaled anesthetics induces a release of Ca from the endoplasmic reticulum (ER) into the cytosol. Aberrant Ca mobilization may alter the protein-folding environment in the ER, causing ER stress. Binding immunoglobulin protein (BiP) is an ER chaperone that is critical to ER functions. Because ER stress leads to cellular dysfunction and apoptotic cell death, leading to diverse human disorders such as neurodegenerative diseases, we hypothesized ER stress may play a role in neurotoxicity caused by inhaled anesthetics.
Methods: We investigated the relationship between ER stress and neurodegeneration caused by inhaled anesthetics by using knock-in mice expressing a mutant BiP and neuronal culture cells. Neuronal culture cells and mutant BiP pregnant mice were exposed to 3% sevoflurane. The levels of BiP and C/EBP homologous protein (CHOP), a transcription factor related to cell death during ER stress, were evaluated by Western blot in neuronal cells and fetal brains delivered by cesarean delivery. Cell death in the fetal brains was evaluated with TUNEL staining. Statistical significance was assessed using unpaired t test and analysis of variance followed by multiple comparison tests.
Results: Sevoflurane exposure enhanced the expression of BiP and CHOP significantly in neuronal culture cells. A chemical chaperone that assisted ER functions reduced the expression of CHOP induced by sevoflurane exposure. In an in vivo study, we observed that an enhanced expression of CHOP and significantly more apoptotic cells in the brains of homozygous mutant BiP fetuses compared with the wild type. Mouse embryonic fibroblasts derived from the mutant BiP mice also exhibited enhanced levels of CHOP and cleaved caspase-3 after sevoflurane exposure.
Conclusions: Sevoflurane exposure may cause ER stress, which is tolerated to some extent in wild-type cells. When this tolerance is limited, like in cells with mutant BiP, the exposure leads to cell death in the brain, suggesting that ER stress may partially mediate neurotoxicity caused by inhaled anesthetics. This study suggests that patients with certain conditions sensitive to ER stress such as ischemia, hypoxia, developing brain, or neurodegenerative diseases may be vulnerable to inhaled anesthetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ANE.0b013e3182a74773 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Objective: To evaluate the effectiveness of integrating GASMAN anesthesia simulation software with case-based learning (IGC) compared to traditional lecture-based learning (LBL) in teaching inhalation anesthesia to undergraduate anesthesiology students.
Methods: Fourth-year students from two academic years (2022, = 110; 2023, = 131) enrolled in a five-year anesthesiology program were assigned to either traditional lecture-based learning (LBL) or IGC groups. The LBL group received traditional lectures using PowerPoint slides, while the IGC group engaged with GASMAN anesthesia simulation software (a tool designed for anesthesia simulation and gas monitoring) combined with case-based learning.
Drugs R D
January 2025
Research Division, Federal Institute of Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
Introduction: In November 2018, the European Medicines Agency (EMA) restricted the use of fluoroquinolones (used by mouth, injections or inhalation) in the context of a referral due to long-lasting and potentially irreversible adverse drug reactions (ADRs). Fluoroquinolones should no longer be used to treat mild or moderate bacterial infections unless other antibacterials cannot be used.
Objectives: The first aim of our study was to analyze whether in the period before compared with after the referral the characteristics of spontaneous ADR reports related to fluoroquinolones differed and whether specific ADRs were more frequently reported for fluoroquinolones compared with cotrimoxazole.
Neurochem Res
January 2025
Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive.
View Article and Find Full Text PDFMed Gas Res
June 2025
Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
High-concentration oxygen inhalation is the primary intervention to prevent perioperative hypoxemia. However, there are concerns that this may induce an imbalance in oxidation‒reduction processes, particularly in pediatric patients with compromised antioxidant defenses. This study aimed to evaluate the impact of varying intraoperative concentrations of oxygen inhalation on oxidative stress in children by analyzing plasma biomarkers, oxygenation indices, and the duration of surgery and oxygen inhalation.
View Article and Find Full Text PDFMed Gas Res
June 2025
Department of Anesthesia, Pain and Perioperative Medicine, Stanford University, Stanford, CA, USA.
Animal models investigating sevoflurane or compound A and renal function serve as the initial basis for concerns regarding renal injury following sevoflurane anesthesia and subsequent recommendations of minimum fresh gas flow, but this evidence basis has not been critically appraised. Primary literature searches were performed in MEDLINE OVID, PubMed, EMBASE, the Cochrane Library), the Cochrane Central Register of Controlled Trials, the International HTA Database, CINAHL, and Web of Science to identify randomized controlled trials and quasi-experimental studies in animals utilizing sevoflurane or compound A. The primary outcomes included renal function as determined by blood urea nitrogen, serum creatinine, creatinine clearance, and urine volume.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!