Hyperbolic spin vortices and textures in exciton-polariton condensates.

Nat Commun

Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: May 2014

From cosmology to the microscopic scales of the quantum world, the study of topological excitations is essential for the understanding of phase conformation and phase transitions. Quantum fluids are convenient systems to investigate topological entities because well-established techniques are available for their preparation, control and measurement. Across a phase transition, a system dramatically changes its properties because of the spontaneous breaking of certain continuous symmetries, leading to generation of topological defects. In particular, attention is given to entities that involve both spin and phase topologies. Exciton-polariton condensates are quantum fluids combining coherence and spin properties that, thanks to their light-matter nature, bring the advantage of direct optical access to the condensate order parameter. Here we report on the spontaneous occurrence of hyperbolic spin vortices in polariton condensates, by directly imaging both their phase and spin structure, and observe the associated spatial polarization patterns, spin textures that arise in the condensate.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms3590DOI Listing

Publication Analysis

Top Keywords

hyperbolic spin
8
spin vortices
8
exciton-polariton condensates
8
quantum fluids
8
phase
5
spin
5
vortices textures
4
textures exciton-polariton
4
condensates cosmology
4
cosmology microscopic
4

Similar Publications

In two-dimensional (2D) hyperbolic materials, energy is directed into their deep subwavelength polaritonic modes through four narrow beams. Hyperbolic whispering-gallery mode nanocavity-confined phonon polaritons (PhPs) display a strongly enhanced light-matter interaction in the infrared regime. Particularly, the unidirectional phonon-polarization excitation in nanocavities has a potential application value in an on-chip integrated optical circuit design, efficient optical sensors, and enhanced spectral technology.

View Article and Find Full Text PDF

Purpose: To mitigate the B/B sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control.

Methods: We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs.

View Article and Find Full Text PDF

Accurate diabatization based on combined-hyperbolic-inverse-power-representation: 1,2 2A' states of BeH2.

J Chem Phys

April 2024

School of Physics and Physical Engineering, Qufu Normal University, 273165 Qufu, People's Republic of China.

A diabatic potential energy matrix (DPEM) for the two lowest states of BeH2+ has been constructed using the combined-hyperbolic-inverse-power-representation (CHIPR) method. By imposing symmetry constraints on the coefficients of polynomials, the complete nuclear permutation inversion symmetry is correctly preserved in the CHIPR functional form. The symmetrized CHIPR functional form is then used in the diabatization by ansatz procedure.

View Article and Find Full Text PDF

Purpose: This study evaluated the velocity-selective (VS) MRA with different VS labeling modules, including double refocused hyperbolic tangent, eight-segment B1-insensitive rotation, delay alternating with nutation for tailored excitation, Fourier transform-based VS saturation, and Fourier transform-based inversion.

Methods: These five VS labeling modules were evaluated first through Bloch simulations, and then using VSMRA directly on various cerebral arteries of healthy subjects. The relative signal ratios from arterial ROIs and surrounding tissues as well as relative arteria-tissue contrast ratios of different methods were compared.

View Article and Find Full Text PDF

Photonic Topological Spin Pump in Synthetic Frequency Dimensions.

Phys Rev Lett

January 2024

Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.

Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic lattices. Laughlin's topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!