A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. | LitMetric

Fish oil (FO) is a commonly used supplemental source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 2 n-3 (ω-3) polyunsaturated fatty acids (PUFAs) that have been shown to have a variety of health benefits considered to be protective against cardiometabolic diseases. Although the effects of EPA and DHA on lipid metabolism have been extensively studied, not all of the metabolic effects of FO-derived n-3 PUFAs have been characterized. Our laboratory recently showed that a high-fructose diet in rhesus monkeys induces the features of metabolic syndrome (MetS) similar to those observed in humans. Thus, we specifically wanted to evaluate the effects of FO in rhesus monkeys fed a high-fructose diet and hypothesized that FO supplementation would mitigate the development of fructose-induced insulin resistance, dyslipidemia, and other cardiometabolic risk factors. In this study, adult monkeys (aged 12-20 y) received either a standard unpurified diet plus 75 g fructose/d (control group; n = 9) or a standard unpurified diet, 75 g fructose/d, and 4 g FO (16% EPA + 11% DHA)/d (treatment group; n = 10) for 6 mo. Importantly, our results showed that daily FO supplementation in the monkeys prevented fructose-induced hypertriglyceridemia and insulin resistance as assessed by intravenous-glucose-tolerance testing (P ≤ 0.05). Moreover, FO administration in the monkeys prevented fructose-induced increases in plasma apolipoprotein (Apo)C3, ApoE, and leptin concentrations and attenuated decreases in circulating adropin concentrations (P ≤ 0.05). No differences between the control and FO-treated monkeys were observed in body weight, lean mass, fat mass, or fasting glucose, insulin, and adiponectin concentrations. In conclusion, FO administration in a nonhuman primate model of diet-induced MetS ameliorates many of the adverse changes in lipid and glucose metabolism induced by chronic fructose consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861794PMC
http://dx.doi.org/10.3945/jn.113.178061DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
fish oil
8
fructose-induced hypertriglyceridemia
8
hypertriglyceridemia insulin
8
high-fructose diet
8
rhesus monkeys
8
standard unpurified
8
unpurified diet
8
diet fructose/d
8
monkeys prevented
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!