A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach for lung nodules segmentation in chest CT using level sets. | LitMetric

A new variational level set approach is proposed for lung nodule segmentation in lung CT scans. A general lung nodule shape model is proposed using implicit spaces as a signed distance function. The shape model is fused with the image intensity statistical information in a variational segmentation framework. The nodule shape model is mapped to the image domain by a global transformation that includes inhomogeneous scales, rotation, and translation parameters. A matching criteria between the shape model and the image implicit representations is employed to handle the alignment process. Transformation parameters evolve through gradient descent optimization to handle the shape alignment process and hence mark the boundaries of the nodule “head.” The embedding process takes into consideration the image intensity as well as prior shape information. A nonparametric density estimation approach is employed to handle the statistical intensity representation of the nodule and background regions. The proposed technique does not depend on nodule type or location. Exhaustive experimental and validation results are demonstrated on 742 nodules obtained from four different CT lung databases, illustrating the robustness of the approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2013.2282899DOI Listing

Publication Analysis

Top Keywords

shape model
16
lung nodule
8
nodule shape
8
image intensity
8
employed handle
8
alignment process
8
nodule
6
shape
6
lung
5
novel approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!