Nitrogen (N2) fixation was investigated at Mound 12, Costa Rica, to determine its spatial distribution and biogeochemical controls in deep-sea methane seep sediment. Using (15)N2 tracer experiments and isotope ratio mass spectrometry analysis, we observed that seep N2 fixation is methane-dependent, and that N2 fixation rates peak in a narrow sediment depth horizon corresponding to increased abundance of aggregates of anaerobic methanotrophic archaea (ANME-2) and sulfate-reducing bacteria (SRB). Using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS), we directly measured (15)N2 uptake by ANME-2/SRB aggregates (n = 26) and observed maximum (15)N incorporation within ANME-2-dominated areas of the aggregates, consistent with previous analyses. NanoSIMS analysis of single cells (n = 34) from the same microcosm experiment revealed no (15)N2 uptake. Together, these observations suggest that ANME-2, and possibly physically associated SRB, mediate the majority of new nitrogen production within the seep ecosystem. ANME-2 diazotrophy was observed while in association with members of two distinct orders of SRB: Desulfobacteraceae and Desulfobulbaceae. The rate of N2 fixation per unit volume biomass was independent of the identity of the associated SRB, aggregate size and morphology. Our results show that the distribution of seep N2 fixation is heterogeneous, laterally and with depth in the sediment, and is likely influenced by chemical gradients affecting the abundance and activity of ANME-2/SRB aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12247DOI Listing

Publication Analysis

Top Keywords

spatial distribution
8
nitrogen fixation
8
methane seep
8
seep sediment
8
mass spectrometry
8
seep fixation
8
15n2 uptake
8
anme-2/srb aggregates
8
associated srb
8
fixation
6

Similar Publications

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

Normalization Based on Shift and Ion Intensity in SALDI-TOFMS Imaging of Samples with Non-Horizontal Surface.

Mass Spectrom (Tokyo)

December 2024

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.

Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.

View Article and Find Full Text PDF

Novel multiplexed spatial proteomics imaging platforms expose the spatial architecture of cells in the tumor microenvironment (TME). The diverse cell population in the TME, including its spatial context, has been shown to have important clinical implications, correlating with disease prognosis and treatment response. The accelerating implementation of spatial proteomic technologies motivates new statistical models to test if cell-level images associate with patient-level endpoints.

View Article and Find Full Text PDF

Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!