Serial block-face electron microscopy with focused ion beam cutting suffers from cutting artefacts caused by changes in the relative position of beam and sample, which are, for example, inevitable when reconditioning the ion gun. The latter has to be done periodically, which limits the continuous stack-acquisition time to several days. Here, we describe a method for controlling the ion-beam position that is based on detecting that part of the ion beam that passes the sample (transmitted beam). We find that the transmitted-beam current decreases monotonically as the beam approaches the sample and can be used to determine the relative position of beam and sample to an accuracy of around one nanometre. By controlling the beam approach using this current as the feedback parameter, it is possible to ion-mill consecutive 5 nm slices without detectable variations in thickness even in the presence of substantial temperature fluctuations and to restart the acquisition of a stack seamlessly. In addition, the use of a silicon junction detector instead of the in-column detector is explored.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.12086DOI Listing

Publication Analysis

Top Keywords

ion beam
12
beam
8
relative position
8
position beam
8
beam sample
8
controlling fib-sbem
4
fib-sbem slice
4
slice thickness
4
thickness monitoring
4
monitoring transmitted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!