Amyloid oligomers represent the primary pathological species for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Toxic oligomers are formed by many different proteins and peptides, but their polydispersity makes them highly dynamic and heterogeneous. One way to stabilize these structures is to prepare constrained peptides that can be used to study amyloid intermediates, to identify oligomer-specific drugs, and to generate conformational antibodies. These conformational antibodies have demonstrated that oligomers share a common epitope. In this research, we used a 40-amino acid unstructured segment of prion protein (Prp) 109-148 with substitutions of methionine for glycine (Prp-G) residues to prepare a stable and homogeneous population of β-sheet oligomer mimics. These structures were characterized by multiple biophysical and biochemical techniques that show characteristic features of oligomers. Finally, this preparation was not detected by three different sequence dependent prion antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867962 | PMC |
http://dx.doi.org/10.1021/cn4001395 | DOI Listing |
Int J Mol Sci
January 2025
Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain.
Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.
View Article and Find Full Text PDFCell
January 2025
University of Chinese Academy of Sciences, Beijing, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:
The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). However, subunit assembly and molecular architecture of endogenous NMDARs (eNMDARs) in the brain remain elusive. Using conformation- and subunit-dependent antibodies, we purified eNMDARs from adult rat cerebral cortex and hippocampus.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).
View Article and Find Full Text PDFJ Virol
January 2025
Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!