Data for genes relevant to glomerular filtration barrier function or proteinuria is continually increasing in an era of microarrays, genome-wide association studies, and quantitative trait locus analysis. Researchers are limited by published literature searches to select the most relevant genes to investigate. High-throughput cell cultures and other in vitro systems ultimately need to demonstrate proof in an in vivo model. Generating mammalian models for the genes of interest is costly and time intensive, and yields only a small number of test subjects. These models also have many pitfalls such as possible embryonic mortality and failure to generate phenotypes or generate nonkidney specific phenotypes. Here we describe an in vivo zebrafish model as a simple vertebrate screening system to identify genes relevant to glomerular filtration barrier function. Using our technology, we are able to screen entirely novel genes in 4-6 weeks in hundreds of live test subjects at a fraction of the cost of a mammalian model. Our system produces consistent and reliable evidence for gene relevance in glomerular kidney disease; the results then provide merit for further analysis in mammalian models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784067 | PMC |
http://dx.doi.org/10.1155/2013/658270 | DOI Listing |
Acta Parasitol
January 2025
Centralized Instrumentation Laboratory, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 007, India.
Introduction: Toxocarosis in human beings is currently diagnosed by serological assay based on the detection of antibodies against Toxocara antigens. Toxocara canis larvae do not reach the adult stage in paratenic hosts like humans and mice. Therefore experimental infection in mice, which mimics the biology of human infection, might be relevant to get a better understanding of human toxocarosis.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
CENTOGENE GmbH, Rostock, Germany.
We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.
Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.
Inflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Nat Commun
January 2025
MRC Laboratory of Medical Sciences, London, UK.
Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!