Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016801PMC
http://dx.doi.org/10.1126/scisignal.2004512DOI Listing

Publication Analysis

Top Keywords

hepatocyte-derived microparticles
12
microparticles
10
endothelial cells
8
endothelial cell
8
induced migration
8
migration tube
8
tube formation
8
angiogenesis liver
8
angiogenesis
6
lipid-induced toxicity
4

Similar Publications

Venous thromboembolism is a common complication following trauma. We investigated the dynamics of plasma microparticles (MPs) levels and explored their potential as biomarkers of deep vein thromboembolism (DVT) after trauma. A total of 775 patients with traumatic fractures were recruited in this nested study.

View Article and Find Full Text PDF

During the progression from hepatitis to fibrosis, cirrhosis, and liver failure, the accumulation of stressed/damaged hepatocyte elements associated with liver inflammation is critical. The causes of hepatocyte injuries include viral hepatitis infections, alcoholic hepatitis, and non-alcoholic fatty liver disease. Hepatocyte-derived extracellular vesicles (Hep-EVs) released from stressed/damaged hepatocytes are partly responsible for liver disease progression and liver damage because they activate non-parenchymal cells and infiltrate inflammatory cells within the liver, which are in turn are an important source of EVs.

View Article and Find Full Text PDF

Injured hepatocyte-released microvesicles induce bone marrow-derived mononuclear cells differentiation.

Differentiation

June 2016

Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Post-Graduation Program on Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Electronic address:

The ability of bone marrow-derived mononuclear cells (BMMCs) to differentiate into hepatocyte-like cells under different conditions has been demonstrated previously. In the present study, we investigated the effect of CCl4-injured hepatocytes on the differentiation of the non-adherent (NAD) fraction of BMMCs. Differentiation (cell fate) was analyzed after 2, 6 and 24h of co-culture by gene and protein expression and by urea production.

View Article and Find Full Text PDF

Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis.

View Article and Find Full Text PDF

Background & Aims: Circulating membrane-shed microparticles (MPs) participate in regulation of vascular tone. We investigated the cellular origins of MPs in plasma from patients with cirrhosis and assessed the contribution of MPs to arterial vasodilation, a mechanism that contributes to portal hypertension.

Methods: We analyzed MPs from blood samples of 91 patients with cirrhosis and 30 healthy individuals (controls) using flow cytometry; their effects on the vascular response to vasoconstrictors were examined in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!