The effect of lattice strain on the catalytic properties of Pd nanoparticles is systematically studied. Synthetic strategies for the preparation of a series of shape-controlled Pd nanocrystals with lattice strain generated from different sources has been developed. All of these nanocrystals were created with the same capping agent under similar reaction conditions. First, a series of Pd nanoparticles was synthesized that were enclosed in {111} surfaces: Single-crystalline Pd octahedra, single-crystalline AuPd core-shell octahedra, and twinned Pd icosahedra. Next, various {100}-terminated particles were synthesized: Single-crystalline Pd cubes and single-crystalline AuPd core-shell cubes. Different extents of lattice strain were evident by comparing the X-ray diffraction patterns of these particles. During electrocatalysis, decreased potentials for CO stripping and increased current densities for formic-acid oxidation were observed for the strained nanoparticles. In the gas-phase hydrogenation of ethylene, the activities of the strained nanoparticles were lower than those of the single-crystalline Pd nanoparticles, perhaps owing to a larger amount of cetyl trimethylammonium bromide on the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201300447 | DOI Listing |
Phys Chem Chem Phys
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
The lattice-strain engineering of high-entropy-oxide nanoparticles (HEO-NPs) is considered an effective strategy for achieving outstanding performance in various applications. However, lattice-strain engineering independent of the composition variation still confronts significant challenges, with existing modulation techniques difficult to achieve mass production. Herein, a novel continuous-flow synthesis strategy by flame spray pyrolysis (FSP) is proposed, which air varying flow rates is introduced for fast quenching to alter the cooling rate and control the lattice strain of HEO-NPs.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Military University of Technology, Kaliskiego 2 St., 00-908 Warsaw, Poland.
Cellular structures are increasingly utilized in modern engineering due to their exceptional mechanical and physical properties. In this study, the deformation and failure mechanisms of two energy-efficient lattice structures-hexagonal honeycomb and re-entrant honeycomb-were investigated. These structures were manufactured using additive stereolithography with light-curable Durable Resin V2.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.
(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!