We investigate the loss mechanism in three-moded multimode-interference couplers that are the building blocks of a compact and low-loss waveguide crossing structure. Broadband silicon waveguide crossing arrays with <0.01 dB insertion loss per crossing are proposed using cascaded multimode-interference couplers, where lateral subwavelength nanostructures are used to reduce the insertions loss. We design and fabricate a 101×101 waveguide crossing array with a pitch of 3.08 μm. Insertion loss of ∼0.02 dB per crossing and crosstalk <-40 dB at 1550 nm operating wavelength and a broad transmission spectrum ranging from 1520 to 1610 nm are experimentally demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.003608 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-1314, Iran.
The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centre-Energie Materiaux et Telecommunications, Institut National de la Recherche Scientifique, Montreal, QC H5A 1K6, Canada.
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.
View Article and Find Full Text PDFThe cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.
View Article and Find Full Text PDFAppl Phys Lett
January 2024
Communications Technology Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!