A method for obtaining high-quality 2D-IR spectra of gas-phase samples is presented. Time-resolved IR absorption spectroscopy techniques, such as 2D-IR spectroscopy, often require that beams are focused into the sample. This limits the exploitable overlapped path length through samples to a few millimeters. To circumvent this limitation, 2D-IR experiments have been performed within a hollow waveguide. This has enabled acquisition of 2D-IR spectra of low-concentration gas-phase samples, with more than an order of magnitude signal enhancement compared with the equivalent experiment in free space. The technique is demonstrated by application to the 2D-IR spectroscopy of iron pentacarbonyl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.003596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!