Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.00A726DOI Listing

Publication Analysis

Top Keywords

ybylo ceramic
12
temperature dependent
8
yb3+ doped
8
doped yttrium
8
yttrium lanthanum
8
lanthanum oxide
8
dependent emission
4
emission absorption
4
absorption cross
4
cross yb3+
4

Similar Publications

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!