In this work solar cell anti-reflection coatings tuned to give a specific hue under solar illumination are investigated. We demonstrate that it is possible to form patterned coatings with large color contrast and high transmittance. We use colorimetric and thin film optics models to explore the relationship between the color and performance of bilayer anti-reflection coatings on Si, and predict the photocurrent generation from an example Si solar cell. The colorimetric predictions were verified by measuring a series of coatings deposited on Si substrates. Finally, a patterned Si sample was produced using a simple, low-cost photolithography procedure to selectively etch only the top layer of a bilayer coating to demonstrate a high-performance anti-reflection coating with strong color contrast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.00A585 | DOI Listing |
Adv Mater
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Energy Conversion Materials, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Crystallization process is critical for enhancing the crystallinity, regulating the crystal orientation of polycrystalline thin films, as well as repairing defects within the films. For quasi-1D SbSe photovoltaic materials, the preparation of SbSe thin films still faces great challenges in adjusting orientation and defect properties, which limits the device performance. In this study, a novel post-treatment strategy is developed that uses a low melting point BO coating layer as a flux to drive the recrystallization of SbSe, thereby regulating the micro-orientation of thermal evaporation-derived SbSe films and optimizing their electrical properties.
View Article and Find Full Text PDFThe power conversion efficiency of crystalline silicon (c - Si) solar cells have witnessed a 2.1% increase over the last 25 years due to improved carrier transport. Recently, the conversion efficiency of c - Si cell has reached 27.
View Article and Find Full Text PDFFaraday isolators are usually limited to Faraday materials with strong Verdet constants. We present a method to reach the 45° polarization rotation angle needed for optical isolators with materials exhibiting a weak Faraday effect. The Faraday effect is enhanced by passing the incident radiation multiple times through the Faraday medium while the rotation angle accumulates after each pass.
View Article and Find Full Text PDFSelf-adaptive photothermal (PT) and radiative cooling (RC) based on insulation-metal phase transition vanadium dioxide (VO) are among the most promising continuous energy harvesting technologies recently. However, previous work relies on rigid substrates that cannot fit complex or non-planar surfaces. Here, we propose a flexible composite film by bonding a VO thin film and a polyimide (PI) substrate with polymethyl methacrylate (PMMA), which achieves efficient spectrally self-adaptive broadband absorption/emission and can convert between the daytime PT mode and nighttime RC mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!