AI Article Synopsis

  • This study explores solar cell anti-reflection coatings designed to produce specific colors when illuminated by sunlight.
  • It successfully demonstrates that these patterned coatings can achieve significant color contrast while allowing high light transmission.
  • Using models and practical testing, the research verifies how these coatings can improve the photocurrent generation in silicon solar cells, culminating in the creation of a patterned sample with effective performance and appealing aesthetics.

Article Abstract

In this work solar cell anti-reflection coatings tuned to give a specific hue under solar illumination are investigated. We demonstrate that it is possible to form patterned coatings with large color contrast and high transmittance. We use colorimetric and thin film optics models to explore the relationship between the color and performance of bilayer anti-reflection coatings on Si, and predict the photocurrent generation from an example Si solar cell. The colorimetric predictions were verified by measuring a series of coatings deposited on Si substrates. Finally, a patterned Si sample was produced using a simple, low-cost photolithography procedure to selectively etch only the top layer of a bilayer coating to demonstrate a high-performance anti-reflection coating with strong color contrast.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.00A585DOI Listing

Publication Analysis

Top Keywords

anti-reflection coatings
12
solar cell
8
color contrast
8
coatings
5
modeling analysis
4
analysis high-performance
4
high-performance multicolored
4
anti-reflection
4
multicolored anti-reflection
4
solar
4

Similar Publications

Boron Trioxide-Assisted Post-Annealing Enables Vertical Oriented Recrystallization of SbSe Thin Film for High-Efficiency Solar Cells.

Adv Mater

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Energy Conversion Materials, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

Crystallization process is critical for enhancing the crystallinity, regulating the crystal orientation of polycrystalline thin films, as well as repairing defects within the films. For quasi-1D SbSe photovoltaic materials, the preparation of SbSe thin films still faces great challenges in adjusting orientation and defect properties, which limits the device performance. In this study, a novel post-treatment strategy is developed that uses a low melting point BO coating layer as a flux to drive the recrystallization of SbSe, thereby regulating the micro-orientation of thermal evaporation-derived SbSe films and optimizing their electrical properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of nano-hole array photonic crystal structures in Ge-on-Si single photon avalanche diodes (SPADs) to enhance their performance, specifically focusing on single photon detection efficiencies (SPDE).
  • It highlights the need for research into the effects of these structures on SPDE and dark count rates, establishing a platform for optimization and analysis of photonic crystals within SPAD devices.
  • Simulations indicate that optimized photonic crystal designs could significantly boost photon absorption to 37.09% at 1550 nm, potentially resulting in over 2.4 times higher SPDE and improved noise-equivalent power if surfaces are well-passivated.
View Article and Find Full Text PDF

The power conversion efficiency of crystalline silicon (c - Si) solar cells have witnessed a 2.1% increase over the last 25 years due to improved carrier transport. Recently, the conversion efficiency of c - Si cell has reached 27.

View Article and Find Full Text PDF

Faraday isolators are usually limited to Faraday materials with strong Verdet constants. We present a method to reach the 45° polarization rotation angle needed for optical isolators with materials exhibiting a weak Faraday effect. The Faraday effect is enhanced by passing the incident radiation multiple times through the Faraday medium while the rotation angle accumulates after each pass.

View Article and Find Full Text PDF

Self-adaptive photothermal (PT) and radiative cooling (RC) based on insulation-metal phase transition vanadium dioxide (VO) are among the most promising continuous energy harvesting technologies recently. However, previous work relies on rigid substrates that cannot fit complex or non-planar surfaces. Here, we propose a flexible composite film by bonding a VO thin film and a polyimide (PI) substrate with polymethyl methacrylate (PMMA), which achieves efficient spectrally self-adaptive broadband absorption/emission and can convert between the daytime PT mode and nighttime RC mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!