A proof-of-principle study of a 1.97-µm Tm:LuO ceramic disk laser, intracavity pumped by a 1.2-µm semiconductor disk laser, is presented. The demonstrated concept allows for improved pump absorption and takes advantage of the broad wavelength coverage provided by semiconductor disk laser technology. For thin disk lasers the small thickness of the gain element typically leads to inefficient pump light absorption. This problem is usually solved by using a complex multi-pass pump arrangement. In this study we address this challenge with a new laser concept of an intracavity pumped ceramic thin disk laser. The output power at 1.97 µm was limited to 250 mW due to heat spreader-less mounting scheme of the ceramic gain disk.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.023844DOI Listing

Publication Analysis

Top Keywords

disk laser
24
semiconductor disk
12
disk
8
ceramic disk
8
intracavity pumped
8
thin disk
8
laser
7
2-µm tmlu₂o₃
4
ceramic
4
tmlu₂o₃ ceramic
4

Similar Publications

We present an active alignment and stabilization control system for laser setups based on a thin-disk regenerative amplifier. This method eliminates power and pointing instability during the warm-up period and improves long-term stability throughout the entire operation. The alignment method is based on a four-mirror control system consisting of two motorized mirrors placed within the regenerative amplifier cavity, two additional motorized mirrors external to the amplifier cavity, and four camera detectors.

View Article and Find Full Text PDF

Introduction: High-frequency laser therapy has been increasingly used in several musculoskeletal disorders, but there is still a lack of evidence for the usage of the device in neck pain. This study aimed to compare the effectiveness of physiotherapy, high-frequency laser, and exercise therapy methods in the treatment of pain in cervical disk herniation.

Methods: It was a multicenter, randomized, controlled clinical trial.

View Article and Find Full Text PDF

Constructing two bifunctional tooth-targeting antimicrobial peptides for caries management: an in vitro study.

Clin Oral Investig

December 2024

Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.

Objectives: Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management.

Materials And Methods: The minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining.

View Article and Find Full Text PDF

We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework.

View Article and Find Full Text PDF

Aerococcus urinae urinary tract infections: A case series.

Acta Microbiol Immunol Hung

December 2024

1Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 71500 Crete, Greece.

Aerococcus urinae is an uncommon uropathogen that mainly affect the elderly with predisposing conditions. Aim of the present study was to investigate the clinical and microbiological characteristics of patients with urinary tract infections (UTIs) by A. urinae and determine the antimicrobial susceptibility patterns of the isolates, over the last 3 years at our institution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!