A full-duplex lightwave transport system employing wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques, as well as optical free-space transmission scheme is proposed and experimentally demonstrated. Over an 80-km single-mode fiber (SMF) and 2.4 m optical free-space transmissions, impressive bit error rate (BER) performance is obtained for long-haul fiber link and finite free-space transmission distance. Such a full-duplex lightwave transport system based on long-haul SMF and optical free-space transmissions has been successfully demonstrated, which cannot only present its advancement in lightwave application, but also reveal its simplicity and convenience for the real implementation. Our proposed systems are suitable for the lightwave communication systems in wired and wireless transmissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.023655 | DOI Listing |
Sensors (Basel)
January 2025
Research and Development Center of Optoelectronic Hybrid IC, Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China.
Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.
Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.
Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!