We propose a gold modified bow-tie plasmonic nano-antenna, which can be suitably used in combination with total internal reflection fluorescence microscopy. The plasmonic nano-antenna, supporting well-separated multiple resonances, not only concentrates the total internal reflection evanescent field at the deep subwavelength scale, but also enhances fluorescence emission by the Purcell effect. Finite-difference time-domain computations show that the enhancement of the excitation light strongly correlates with the far-field radiation pattern radiated from the antenna. Depending on the antenna geometry, the resonant modes are widely tuned and their wavelengths can be easily matched to the diverse emission or excitation wavelengths of fluorophores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.023036 | DOI Listing |
Sci Rep
November 2024
Electronics and Communications Department, Faculty of Engineering, Helwan University, Cairo, 11795, Egypt.
This paper introduces a Hybrid Plasmonic Nano-Antenna (HPNA) with a gradient-index dielectric flat lens modeled with different materials to enhance and steer the radiation in a particular direction based on a phase shift array. Firstly, the design of hybrid plasmonic Nano-Antenna (NA) is introduced and analyzed considering different horn-shapes such as diamond, hexagonal, circular, rectangular, and square shapes. The commercial software Computer Simulation Technology-Microwave Studio (CST-MWS) is used to analyze the radiation characteristics of the plasmonic NAs at the standard telecommunication wavelength of 1,550 nm.
View Article and Find Full Text PDFAs a promising technology to realize multilevel, non-volatile data storage and information processing, optical phase change technologies have attracted extensive attention in recent years. However, existing phase-change photonic devices face significant challenges such as limited switching contrast and high switching energy. This study introduces an innovative approach to tackle these issues by leveraging Fabry-Perot (F-P) cavity resonance and plasmon resonance techniques to enhance the modulation effect of phase change materials (PCMs) on the light.
View Article and Find Full Text PDFNanotechnology
April 2024
Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France.
Integrated quantum photonic circuits require the efficient coupling of photon sources to photonic waveguides. Hybrid plasmonic/photonic platforms are a promising approach, taking advantage of both plasmon modal confinement for efficient coupling to a nearby emitter and photonic circuitry for optical data transfer and processing. In this work, we established directional quantum dot (QD) emission coupling to a planar TiOwaveguide assisted by a Yagi-Uda antenna.
View Article and Find Full Text PDFSci Rep
November 2023
Department of Electronics and Communication, Veer Bahadhur Singh Purvanchal University, Jaunpur, India.
In this manuscript, a hexagonal-shaped graphene quantum plasmonic nanopatch antenna sensor is designed and investigated on silicon dioxide, zinc oxide and silicon substrates for quantum plasmonic biosensing applications. The optical properties of graphene are demonstrated using Kubo modeling to analyze the plasmon resonance characteristics of the nanopatch antenna. Nano-circuit modeling of the hexagonal-shaped graphene nano-antenna is proposed and validated using CST simulations.
View Article and Find Full Text PDFSci Rep
June 2023
5G & 6G Innovative Centers (5GIC & 6GIC), Institute for Communication Systems (ICS), University of Surrey, Guildford, UK.
In this paper, a controllable hybrid plasmonic integrated circuit (CHPIC) composed of hybrid plasmonic waveguide (HPW)-based rhombic nano-antenna, polarization beam splitter, coupler, filter, and sensor has been designed and investigated for the first time. In order to control the power into a corresponding input port, a graphene-based 1 × 3 power splitter with switchable output has been exploited. The functionality of each device has been studied comprehensively based on the finite element method and the advantages over state-of-the-art have been compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!