The evolution of wireless communication networks supporting emerging broadband services and applications offers new opportunities for realizing integrated optical and wireless network infrastructures. We report on some of our recent activities investigating advanced technologies for next generation converged optical wireless networks. Developments in Active Antenna Systems, mobile fronthaul architectures, and 60 GHz fiber distributed wireless networks are described. We also discuss the potential for analog radio over fiber distribution links as a viable solution for meeting the capacity requirements of new network architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.023001 | DOI Listing |
Adv Sci (Weinh)
January 2025
Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada. Electronic address:
The morphology and thickness of the retinal layers are valuable biomarkers for retinal health and development. The retinal layers in mice are similar to those in humans; thus, a mouse is appropriate for studying the retina. The objectives of this systematic review were: (1) to describe normal retinal morphology quantitatively using retinal layer thickness measured from birth to age 6 months in healthy mice; and (2) to describe morphological changes in physiological retinal development over time using the longitudinal (in vivo) and cross-sectional (ex vivo) data from the included studies.
View Article and Find Full Text PDFGels
December 2024
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., Building 22, Tver 170026, Russia.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Automation and Electrometry of the SB RAS, 1 Acad. Koptyug Ave., 630090 Novosibirsk, Russia.
Modern photonic devices demand low-cost, scalable methods for creating periodic patterns over diverse surfaces including nonplanar and tipped ones, the examples of which can be readily found in fiber optics. Laser-induced periodic surface structures (LIPSS) offer an attractive route for fabricating such patterns in a single-step straightforward procedure, where the temporal and spatial locality of the self-interference effects ensure robustness against variations of the laser processing parameters. In this work, we show the LIPSS-assisted oxidation of thin titanium films by near-IR femtosecond laser pulses as a promising technology for the production of regular gratings consisting of rutile ridges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!