Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicon nitride (Si₃N₄) ring resonators are critical for a variety of photonic devices. However the intrinsically high film stress of silicon nitride has limited both the optical confinement and quality factor (Q) of ring resonators. We show that stress in Si₃N₄ films can be overcome by introducing mechanical trenches for isolating photonic devices from propagating cracks. We demonstrate a Si₃N₄ ring resonator with an intrinsic quality factor of 7 million, corresponding to a propagation loss of 4.2 dB/m. This is the highest quality factor reported to date for high confinement Si₃N₄ ring resonators in the 1,550 nm wavelength range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.022829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!