In this paper, we present a numerical, theoretical and experimental study on the mitigation of Polarization Dependent Loss (PDL) with Polarization-Time (PT) codes in long-haul coherent optical fiber transmissions using Orthogonal Frequency Division Multiplexing (OFDM). First, we review the scheme of a polarization-multiplexed (PolMux) optical transmission and the 2 × 2 MIMO model of the optical channel with PDL. Second, we introduce the Space-Time (ST) codes originally designed for wireless Rayleigh fading channels, and evaluate their performance, as PT codes, in mitigating PDL through numerical simulations. The obtained behaviors and coding gains are different from those observed on the wireless channel. In particular, the Silver code performs better than the Golden code and the coding gains offered by PT codes and forward-error-correction (FEC) codes aggregate. We investigate the numerical results through a theoretical analysis based on the computation of an upper bound of the error probability of the optical channel with PDL. The derived upper bound yields a design criterion for optimal PDL-mitigating codes. Furthermore, a transmission experiment of PDL-mitigation in a 1,000 km optical fiber link with inline PDL validates the numerical and theoretical findings. The results are shown in terms of Q-factor distributions. The mean Q-factor is improved with PT coding and the variance is also narrowed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.022773DOI Listing

Publication Analysis

Top Keywords

numerical theoretical
12
optical fiber
8
optical channel
8
channel pdl
8
coding gains
8
upper bound
8
pdl
6
codes
6
optical
5
polarization-time coding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!