Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a novel broken-nanoring, which can realize strongly localized confinement and highly enhancement for both electric and magnetic fields at two resonant modes excited by normal incident azimuthally polarized light. Two resonant modes of the broken-nanoring are formed by different resonant mechanisms as different resonant lengths. The physical model for two resonant modes is also proposed to explain the mechanisms of the electromagnetic enhancement. The enhancement of the electric and magnetic fields can be further improved by adding a nanoring at the outside of the broken-nanoring to form a composite nanoring, which can freely tune or easily merge the resonant modes of the solitary broken-nanoring while keeping larger enhancement of the electric and magnetic fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.020611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!