The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826695 | PMC |
http://dx.doi.org/10.1194/jlr.M041814 | DOI Listing |
PLoS One
December 2024
Embrapa Southeast Livestock, São Carlos, Brazil.
Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
Donkeys are particularly at risk of hyperlipemia. Hyperlipemia is a metabolic disease caused by the mobilization of fatty acids from adipose tissue, which often impacts pregnant and lactating jennies (female donkeys) during periods of negative energy balance. This study aimed to evaluate the levels of lipids, biochemical parameters, selected antioxidant elements and oxidative stress parameters in late pregnant jennies affected by hyperlipemia.
View Article and Find Full Text PDFSports (Basel)
November 2024
Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy.
Body composition could influence exercise physiology. However, no one has ever studied the effect of visceral fat (VF) on heart rate (HR) trends during and after exercise by using bioimpedance analysis (BIA). This study aims to investigate BIA variables as predictors of HR trends during vigorous exercise.
View Article and Find Full Text PDFMetabolites
December 2024
Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China.
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.
Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.
Metabolites
December 2024
Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania.
: LL-37 is associated with metabolic syndrome (MetS), a constellation of risk factors comprising obesity, insulin resistance (IR), dyslipidemia, and hypertension, which elevates the risk of cardiovascular disease and type 2 diabetes. : In this narrative review, we analyzed the literature focusing on recent developments in the relationship between cathelicidin and various components of MetS to provide a comprehensive overview. : Studies have shown that LL-37 is linked to inflammation in adipose tissue (AT) and the development of IR in obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!