Additional evidence is presented concerning the anisotropy between vertical and horizontal encoding, which emerges from studies of human perception and cognition of space in plane mirror reflections. Moreover, it is suggested that the non-metric characteristic of polarization - that Jeffery et al. discuss with respect to gravity - is not limited to the vertical dimension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0140525X13000332 | DOI Listing |
Small
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
Broadband detection technology is crucial in the fields of astronomy and environmental surveying. Two dimensional (2D) materials have emerged as promising candidates for next-generation broadband photodetectors with the characteristics of high integration, multi-dimensional sensing, and low power consumption. Among these, 2D tellurium (Te) is particularly noteworthy due to its excellent mobility, tunable bandgap, and air stability.
View Article and Find Full Text PDFScience
December 2024
Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA.
Planck's law ignores but does not prohibit black-body radiation (BBR) from being circularly polarized. BBR from nanostructured filaments with twisted geometry from nanocarbon or metal has strong ellipticity from 500 to 3000 nanometers. The submicrometer-scale chirality of these filaments satisfies the dimensionality requirements imposed by fluctuation-dissipation theorem and requires symmetry breaking in absorptivity and emissivity according to Kirchhoff's law.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
Despite extensive studies on magnetic proximity effects, the fundamental excitonic properties of the 2D semiconductor-magnet heterostructures remain elusive. Here, the presence of localized excitons in MoSe/CrSBr heterostructures is unveiled, represented by a new photoluminescence emission feature, X. Our findings reveal that X originates from excitons confined by intrinsic defects in the CrSBr layer.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.
View Article and Find Full Text PDFSmall
December 2024
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
A diarylethene-based zwitterionic molecule (DZM) is newly synthesized for the development of smart films exhibiting reversible color change and switchable ionic conductivity in response to external light stimuli. This dual molecular building block is constructed through zwitterionic interlocking and strong phase separation between the dendron-shaped aliphatic tails and the diarylethene head. Uniaxial shear coating and molecular self-assembly result in anisotropically oriented nanostructures, which are further solidified through photopolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!