Background: The majority of bicarbonate based dialysis fluids are acidified with acetate. Citrate, a well known anticoagulant and antioxidant, has been suggested as a biocompatible alternative. The objective of this study was to evaluate short term safety and biocompatibility of a citrate containing acetate-free dialysis fluid.

Methods: Twenty four (24) patients on maintenance dialysis three times per week, 13 on on-line hemodiafiltration (HDF) and 11 on hemodialysis (HD), were randomly assigned to start with either citrate dialysis fluid (1 mM citrate, 1.5 mM calcium) or control fluid (3 mM acetate, 1.5 mM calcium) in an open-labeled cross-over trial (6 + 6 weeks with 8 treatments wash-out in between). Twenty (20) patients, 11 on HDF and 9 on HD were included in the analyses. Main objective was short term safety assessed by acid-base status, plasma ionized calcium and parathyroid hormone (PTH). In addition, biocompatibility was assessed by markers of inflammation (pentraxin 3 (PTX-3), CRP, IL-6, TNF-α and IL-1β) and thrombogenicity (activated partial thromboplastin time (APTT) and visual clotting scores).

Results: No differences dependent on randomization order or treatment mode (HD vs. HDF) were detected. Citrate in the dialysis fluid reduced the intra-dialytic shift in pH (+0.04 week 6 vs. +0.06 week 0, p = 0.046) and base excess (+3.9 mM week 6 vs. +5.6 mM week 0, p = 0.006) over the study period. Using the same calcium concentration (1.5 mM), citrate dialysis fluid resulted in lower post-dialysis plasma ionized calcium level (1.10 mM vs. 1.27 mM for control, p < 0.0001) and higher post-dialysis PTH level (28.8 pM vs. 14.7 pM for control, p < 0.0001) while pre-dialysis levels were unaffected. Citrate reduced intra-dialytic induction of PTX-3 (+1.1 ng/ml vs. +1.4 ng/ml for control, p = 0.04) but had no effect on other markers of inflammation or oxidative stress. Citrate reduced visual clotting in the arterial air chamber during HDF (1.0 vs. 1.8 for control, p = 0.03) and caused an intra-dialytic increase in APTT (+6.8 s, p = 0.003) without affecting post-dialysis values compared to control.

Conclusions: During this small short term study citrate dialysis fluid was apparently safe to use in HD and on-line HDF treatments. Indications of reduced treatment-induced inflammation and thrombogenicity suggest citrate as a biocompatible alternative to acetate in dialysis fluid. However, the results need to be confirmed in long term studies.

Trial Registration Isrctn: ISRCTN28536511.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124727PMC
http://dx.doi.org/10.1186/1471-2369-14-216DOI Listing

Publication Analysis

Top Keywords

dialysis fluid
24
citrate dialysis
20
short term
16
term safety
12
citrate
11
dialysis
9
acetate citrate
8
fluid
8
biocompatible alternative
8
twenty patients
8

Similar Publications

Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models.

View Article and Find Full Text PDF

Rationale & Objective: Remote patient monitoring (RPM) could improve the quality and efficiency of acute kidney injury (AKI) survivor care. This study described our experience with AKI RPM and characterized its effectiveness.

Study Design: A cohort study matched 1:3 to historical controls.

View Article and Find Full Text PDF

Rhabdomyolysis (RML) arises from the breakdown of muscle tissue, leading to the release of intracellular components into the bloodstream and potentially causing multi-organ failure. Multiple drugs have been reported to cause RML. We present here a rare instance of erythromycin-triggered RML in a patient who was not on any other potential RML-inducing medications.

View Article and Find Full Text PDF

Patients with acute kidney injury often require dialysis (AKI-D) in the outpatient setting following hospitalization. Management of the patient with AKI-D should focus on preventing further insult to the damaged kidney and recovery of kidney function. Clinical attention should include continuity of care, education, infection control, medication management, and fluid management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!