Archaella are the archaeal motility structure that is the functional pendant of the bacterial flagellum but is assembled by a mechanism similar to that for type IV pili. Recently, it was shown by Banerjee et al. that FlaX, a crenarchaeal archaellum subunit from Sulfolobus acidocaldarius, forms a ring-like oligomer, and it was proposed that this ring may act as a static platform for torque generation in archaellum rotation [Banerjee A et al. (2012) J Biol Chem 287, 43322-43330]. Moreover, the hexameric crystal structure of FlaI was solved, and its dual function in the assembly and the rotation of the archaellum was demonstrated [Reindl S et al. (2013) Mol Cell 49, 1069-1082]. In this study, we show by biochemical and biophysical techniques that FlaX from S. acidocaldarius acts as a cytoplasmic scaffold in archaellum assembly, as it interacts with FlaI as well as with the recA family protein FlaH, the only cytoplasmic components of the archaellum. Interaction studies using various truncated versions of FlaI demonstrated that its N- and C-termini interact with FlaX. Moreover, using microscale thermophoresis, we show that FlaI, FlaX and FlaH interact with high affinities in the nanomolar range. Therefore, we propose that these three proteins form the cytoplasmic motor complex of the archaellum.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12534DOI Listing

Publication Analysis

Top Keywords

sulfolobus acidocaldarius
8
archaellum
7
insights subunit
4
subunit interactions
4
interactions sulfolobus
4
acidocaldarius archaellum
4
cytoplasmic
4
archaellum cytoplasmic
4
cytoplasmic complex
4
complex archaella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!