The design and synthesis of a new class of nonpeptide direct thrombin inhibitors, built on the structure of 1-(pyridin-4-yl)piperidine-4-carboxamide, are described. Starting from a strongly basic 1-amidinopiperidine derivative (6) showing poor thrombin (fIIa) and factor Xa (fXa) inhibition activities, anti-fIIa activity and artificial membrane permeability were considerably improved by optimizing the basic P1 and the X-substituted phenyl P4 binding moieties. Structure-activity relationship studies, usefully complemented with molecular modeling results, led us to identify compound 13b, which showed excellent fIIa inhibition (Ki = 6 nM), weak anti-Xa activity (Ki = 5.64 μM), and remarkable selectivity over other serine proteases (e.g., trypsin). Compound 13b showed in vitro anticoagulant activity in the low micromolar range and significant membrane permeability. In mice (ex vivo), 13b demonstrated anticoagulant effects at 2 h after oral dosing (100 mg·kg(-1)), with a significant 43% prolongation of the activated partial thromboplastin time (aPTT), over controls (P < 0.05).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm401169aDOI Listing

Publication Analysis

Top Keywords

direct thrombin
8
thrombin inhibitors
8
anticoagulant activity
8
membrane permeability
8
compound 13b
8
synthesis biological
4
biological evaluation
4
evaluation direct
4
inhibitors bearing
4
bearing 4-piperidin-1-ylpyridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!