Objective: The aim of the study was to investigate the effect of rate of chewing on energy expenditure in human subjects.

Materials And Methods: Fourteen healthy subjects (aged 18-24 years) within the normal range of BMI participated in a cross-over experiment consisting of two 6-min sessions of gum chewing, slow (∼60 cycles/min) and fast (∼120 cycles/min) chewing. The resting energy expenditure (REE) and during gum chewing was measured using a ventilated hood connected to a gas analyzer system. The normality of data was explored using the Shapiro-Wilk test. The energy expenditure rate during chewing and the energy expenditure per chewing cycle were compared between the two chewing speeds using Wilcoxon signed ranks tests.

Results: The energy expenditure per chewing cycle during slow chewing (median 1.4, range 5.2 cal; mean 2.1±1.6 cal) was significantly higher than that during fast chewing (median 0.9, range 2.2 cal; mean 1.0±0.7 cal) (p < 0.005). However, the energy expenditure rate was not significantly different between the two chewing speeds (p > 0.05).

Conclusions: The results of this study suggest that chewing at a slower speed could increase the energy expenditure per cycle and might affect the total daily energy expenditure.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00016357.2013.847490DOI Listing

Publication Analysis

Top Keywords

energy expenditure
36
chewing
13
rate chewing
12
energy
9
expenditure
9
healthy subjects
8
chewing energy
8
gum chewing
8
expenditure rate
8
expenditure chewing
8

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Associations between anthropogenic heat emissions and serum lipids among adults in northeastern China.

Int J Environ Health Res

January 2025

Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.

View Article and Find Full Text PDF

MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.

View Article and Find Full Text PDF

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!