The eukaryotic RAD51 gene family has seven ancient paralogs conserved between plants and animals. Among these, RAD51, DMC1, RAD51C and XRCC3 are important for homologous recombination and/or DNA repair, whereas single mutants in RAD51B, RAD51D or XRCC2 show normal meiosis, and the lineages they represent diverged from each other evolutionarily later than the other four paralogs, suggesting possible functional redundancy. The function of Arabidopsis RAD51B, RAD51D and XRCC2 genes in mitotic DNA repair and meiosis was analyzed using molecular genetic, cytological and transcriptomic approaches. The relevant double and triple mutants displayed normal vegetative and reproductive growth. However, the triple mutant showed greater sensitivity than single or double mutants to DNA damage by bleomycin. RNA-Seq transcriptome analysis supported the idea that the triple mutant showed DNA damage similar to that caused by bleomycin. On bleomycin treatment, many genes were altered in the wild-type but not in the triple mutant, suggesting that the RAD51 paralogs have roles in the regulation of gene transcription, providing an explanation for the hypersensitive phenotype of the triple mutant to bleomycin. Our results provide strong evidence that Arabidopsis XRCC2, RAD51B and RAD51D have complex functions in somatic DNA repair and gene regulation, arguing for further studies of these ancient genes that have been maintained in both plants and animals during their long evolutionary history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.12498 | DOI Listing |
Front Oncol
November 2024
Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
Introduction: Esophageal adenocarcinoma (EAC) remains a devastating disease and second line treatment options in the metastatic space are limited. Homologous recombination (HR) defects have been described in EAC in up to 40% of patients. Poly (ADP-ribose) polymerase (PARP)1 and PARP2 inhibitors have shown efficacy in HR defective prostate and ovarian cancers.
View Article and Find Full Text PDFHomologous recombination (HR) is an important mechanism for repairing DNA double-strand breaks (DSBs) and preserving genome integrity. Pathogenic mutations in the HR proteins BRCA2 and the RAD51 paralogs predispose individuals to breast, ovarian, pancreatic, and prostate cancer. The RAD51 paralogs: RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 form two complexes RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3).
View Article and Find Full Text PDFNucleic Acids Res
October 2024
Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear.
View Article and Find Full Text PDFGynecol Oncol
January 2024
Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA. Electronic address:
Objective: To define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC.
Methods: We included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015-12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors.
Nucleic Acids Res
November 2023
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!