Amphiphilic cyclodextrin (ACyD) provides water-soluble and adaptable nanovectors by modulating the balance between the hydrophobic and hydrophilic chains at both CyD sides. This work aimed to design nanoassemblies based on nonionic and hydrophilic ACyD (SC6OH) for the delivery of a poor-water-soluble organotin(IV)-porphyrin derivative [(Bu3Sn)4TPPS] to melanoma cancer cells. To characterize the porphyrin derivatives under simulated physiological conditions, a speciation was performed using complementary techniques. In aqueous solution (≤ 20 μM), (Bu3Sn)4TPPS primarily exists as a monomer (2 in Figure 1), as suggested by the low static anisotropy (ρ ≈ 0.02) with a negligible formation of porphyrin supramolecular aggregates. MALDI-TOF spectra indicate the presence of moieties (i.e., [(Bu3Sn)3TPPS](-)) that are derivatives of the monomeric species. Spectrofluorimetry coupled with potentiometric measurements primarily assesses the presence of the hydrolytic [(Bu3Sn)4TPPS (OH)4](4-) species under physiological conditions. Nanoassemblies of (Bu3Sn)4TPPS/SC6OH were prepared by dispersion of organic films in PBS at pH 7.4 and were investigated using a combination of spectroscopic and morphological techniques. The UV-vis and emission fluorescence spectra of the (Bu3Sn)4TPPS/SC6OH reveal shifts in the peculiar bands of the organotin(IV)-porphyrin derivative due to its interaction with the ACyD supramolecular assemblies in aqueous solution. The mean size was within the range of 100-120 nm. The ξ-potential was negative (-16 mV) for the (Bu3Sn)4TPPS/SC6OH nanoassemblies, with an entrapment efficiency of approximately 67%. The intracellular delivery, cytotoxicity, nuclear morphology and cell growth kinetics were evaluated via fluorescence microscopy on A375 human melanoma cells. The delivery of (Bu3Sn)4TPPS by ACyD with respect to free (Bu3Sn)4TPPS increases the internalization efficiency and cytotoxicity to induce apoptotic cell death and, at lower concentrations, changes the cellular morphology and prevents cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm400849n | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry University of Tennessee, Knoxville, Tennessee 37996-1600, United States.
A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.
View Article and Find Full Text PDFChemistry
January 2025
Shaanxi Normal University, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, CHINA.
Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA.
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!