Assay of urinary excretion of polyphenols after ingestion of a cup of mountain tea (Sideritis scardica) measured by HPLC-DAD-ESI-MS/MS.

J Agric Food Chem

Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Republic of Macedonia.

Published: November 2013

Flavonoids and phenolic acid metabolites excreted in human urine after ingestion of Sideritis scardica decoction with characterized polyphenolic composition were studied. A feeding study was carried out with 10 human volunteers, and urine samples were collected for 24 h after ingestion of the Sidertis decoction. Polyphenol metabolites were identified and quantified in urine samples by HPLC with tandem mass spectrometric detection. Thirty-one different metabolites of hypolaetin, methylhypolaetin, isoscutellarein, methylisoscutellarein, and apigenin and 32 phenolic acid metabolites were detected and quantified using a method validated for this purpose. The urinary excretion of polyphenol metabolites corresponded to 5% (n/n) of the intake of polyphenols from the Sideritis decoction. Flavonoid metabolites were dominant in urine samples with 87-94% of total polyphenolic metabolites content. The most abundant metabolites were methylhypolaetin and methylisoscutellarein glucuronides. Urinary excretion of isoscutellarein (35.61%) was 10 times higher than that of hypolaetin (3.67%). Apigenin also showed high urinary excretion (32.46%).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf403052wDOI Listing

Publication Analysis

Top Keywords

urinary excretion
16
urine samples
12
sideritis scardica
8
phenolic acid
8
metabolites
8
acid metabolites
8
polyphenol metabolites
8
assay urinary
4
excretion
4
excretion polyphenols
4

Similar Publications

Background: The primary prevention of atrial fibrillation (AF), which increases mortality through complications including stroke and heart failure, is important. Excessive salt intake and low potassium intake are risk factors for cardiovascular disease; however, their association with AF remains inconclusive. This study investigated the association between sodium- and potassium-related urinary markers and AF prevalence.

View Article and Find Full Text PDF

Distal renal tubular acidosis (dRTA) is a significant clinical expression of Sjögren's syndrome (SS). While SS-related dRTA is traditionally linked to impaired H-ATPase, we report a unique case demonstrating selectively decreased anion exchanger 1 (AE1) expression with preserved H-ATPase expression. A 16-year-old girl with SS presented with muscle weakness, difficulty in ambulation, and severe hypokalemia.

View Article and Find Full Text PDF

Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system.

View Article and Find Full Text PDF

Secondary hyperoxaluria is a metabolic disorder characterized by an increase in urinary oxalate excretion. The etiology may arise from an increase in the intake of oxalate or its precursors, decreased elimination at the digestive level, or heightened renal excretion. Recently, the role of the SLC26A6 transporter in the etiopathogenesis of this disease has been identified.

View Article and Find Full Text PDF

An increased renal resistive index (RRI) and proteinuria can predict an estimated glomerular filtration rate (eGFR) decline in patients with chronic kidney disease (CKD) of various causes. This study hypothesized that the RRI and proteinuria interact to determine disease progression in patients with CKDs of unknown origin. : One hundred and fifty six patients (age 76.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!