Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property.

J Am Chem Soc

Nanosystem Research Institute (NRI), "RICS", Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

Published: November 2013

Superior long-range electric transport has been observed in several organometallic wires. Here, we discuss the role of the metal center in the electric transport and examine the possibility of high thermoelectric figure of merit (ZT) by controlling the quantum resonance effects. We examined a few metal center (and metal-free) terpyridine-based complexes by first-principles calculations and clarified the role of the metals in determining the transport properties. Quasi-resonant tunneling is mediated by organic compounds, and narrow overlapping resonance states are formed when d-electron metal centers are incorporated. Distinct length (L) and temperature (T) dependencies of thermopower from semiconductor materials or organic molecular junctions are presented in terms of atomistic calculations of ZT with and without considering the phonon thermal conductance. We present an alternative approach to obtain high ZT for molecular junctions by quantum effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja407662mDOI Listing

Publication Analysis

Top Keywords

electric transport
12
quantum resonance
8
long-range electric
8
metal center
8
molecular junctions
8
thermoelectric efficiency
4
efficiency organometallic
4
organometallic complex
4
complex wires
4
wires quantum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!