Killer toxins secreted by some yeast strains are the proteins that kill sensitive cells of the same or related yeast genera. In recent years, many new yeast species have been found to be able to produce killer toxins against the pathogenic yeasts, especially Candida albicans. Some of the killer toxins have been purified and characterized, and the genes encoding the killer toxins have been cloned and characterized. Many new targets including different components of cell wall, plasma membrane, tRNA, DNA and others in the sensitive cells for the killer toxin action have been identified so that the new molecular mechanisms of action have been elucidated. However, it is still unknown how some of the newly discovered killer toxins kill the sensitive cells. Studies on the killer phenomenon in yeasts have provided valuable insights into a number of fundamental aspects of eukaryotic cell biology and interactions of different eukaryotic cells. Elucidation of the molecular mechanisms of their action will be helpful to develop the strategies to fight more and more harmful yeasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07388551.2013.833582 | DOI Listing |
Fungal Genet Biol
January 2025
Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:
Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).
View Article and Find Full Text PDFFuture Microbiol
December 2024
Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
Aim: Leishmaniasis is a globally prevalent parasitic disease that has drawn significant attention. Killer yeasts offer a novel biological control method, presenting a potential alternative for treating leishmaniasis. This study evaluates the antileishmanial activity of and killer toxins against .
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
The tumor-associated antigen MUC1 is an attractive target for immunotherapy, however, its weak immunogenicity limits the induction of antitumor immune responses. To overcome this limitation, in this study, MUC1 glycopeptide was covalently linked with a diphtheria toxin-derived T-helper epitope (DT). Subsequently, the resulting DT-MUC1 glycopeptide was physically mixed with natural killer T cell agonist αGalCer to explore their immunomodulatory synergy.
View Article and Find Full Text PDFPLoS One
November 2024
Food Microbiology Unit, Miyagi University School of Food Industrial Sciences, Sendai, Japan.
Hansenula mrakii killer toxin resistant gene 1 (HKR1) is an intronless, single-exon gene that encodes Hkr1, the signaling mucin of the budding yeast Saccharomyces cerevisiae. HKR1 overexpression confers S. cerevisiae cells with resistance to the HM-1 killer toxin produced by the killer yeast Hansenula mrakii (currently known as Cyberlindnera mrakii).
View Article and Find Full Text PDFJ Reprod Immunol
December 2024
Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm 614081, Russia.
Estriol (E) is one of hormones whose synthesis is mainly associated with pregnancy. The hormone can also regulate immune cells functions. E influence on monocyte indoleamine-2,3-dioxygenase (IDO1) activity and Treg and NK cells' markers expression was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!