Background: Airborne polycyclic aromatic hydrocarbons (PAHs) are pollutants generated by combustion of fossil fuel and other organic material. Both prenatal PAH exposure and maternal psychological distress during pregnancy have each been associated with neurodevelopmental problems in children. The goal was to evaluate potential interactions between prenatal exposure to airborne PAHs and maternal psychological distress during pregnancy on subsequent behavioral problems in children.
Methods: In a longitudinal birth cohort study, 248 children of nonsmoking white women in the coal-burning region of Krakow, Poland, were followed from in utero until age 9. Prenatal PAH exposure was measured by personal air monitoring during pregnancy, maternal demoralization during pregnancy by the Psychiatric Epidemiology Research Instrument-Demoralization, and child behavior by the Child Behavior Checklist.
Results: Significant interactions between maternal demoralization and PAH exposure (high versus low) were identified for symptoms of anxious/depressed, withdrawn/depressed, social problems, aggressive behavior, internalizing problems, and externalizing problems. The effects of demoralization on syndromes of anxious/depressed, withdrawn/depressed, rule-breaking, aggressive behavior, and the composite internalizing and externalizing scores were seen only in conjunction with high PAH exposure. Fewer significant effects with weaker effect sizes were observed in the low-PAH-exposure group.
Conclusions: Maternal demoralization during pregnancy appears to have a greater effect on child neurobehavioral development among children who experienced high prenatal PAH exposure. The results provide the first evidence of an interaction between prenatal exposure to maternal demoralization and air pollution on child neurobehavioral development, indicating the need for a multifaceted approach to the prevention of developmental problems in children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813389 | PMC |
http://dx.doi.org/10.1542/peds.2012-3844 | DOI Listing |
J Hazard Mater
January 2025
Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Long-term occupational exposure to metals and organics have been reported to be under great health risks. However, limited data are available on the molecular mechanism between combined exposure to metals and polycyclic aromatic hydrocarbons (PAHs) and harmful health effects. In present work, non-target metabolomics study was conducted based on urine samples from nonferrous metal smelting workers (n = 207), surrounding residents (n = 180), and the control residents (n = 187) by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
Severe vitamin D (vitD) deficiency is a very common condition in patients with pulmonary arterial hypertension (PAH) and it is predictor of poor prognosis. There is emerging evidence suggesting a connection between the insufficient response to phosphodiesterase-5 inhibitors (PDE5i) and vitD deficiency in patients with PAH. In the present translational study, vitD deficiency was induced in Wistar rats by exposure to vitD free diet for 5 weeks and followed by Su5416 administration and hypoxia (10%) for 3 weeks, a standard experimental model of PAH.
View Article and Find Full Text PDFToxics
December 2024
Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!