Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral Fe(II) and Bi(III) complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (-78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water-compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1, which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a Fe(II) or Bi(III) metal salt, a chiral ligand (L1), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo- and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the Fe(II) and Bi(III) centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the Fe(II) -catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201301149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!