Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808628 | PMC |
http://dx.doi.org/10.1073/pnas.1310745110 | DOI Listing |
bioRxiv
December 2024
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Quiescence in is a reversible G crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Department of Neurosurgery "Carol Davila", University of Medicine and Pharmacy, 050474 Bucharest, Romania.
iScience
November 2024
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Departamento de Biología Molecular e Ingeniería Bioquímica, Carretera de Utrera, km1 41013 Seville, Spain.
In addition to the degradation of cell-cycle proteins, short-lived, damaged, or unfolded proteins are constantly cleared from cells by the proteasome. During proliferation, the proteasome localizes to the nucleus and cytoplasm; however, the functional relevance of this compartmentalization remains unclear. Here, we show that folding stress increases 26S/30S proteasome activity, which correlates with the upregulation of Ump1, a chaperone involved in 20S assembly.
View Article and Find Full Text PDFMol Biol Rep
August 2024
Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
Background: Thiostrepton (TST) is a known inhibitor of the transcription factor Forkhead box M1 (FoxM1) and inducer of heat shock response (HSR) and autophagy. TST thus may be one potential candidate of anticancer drugs for combination chemotherapy.
Methods And Results: Immunofluorescence staining of mitotic spindles and flow cytometry analysis revealed that TST induces mitotic spindle abnormalities, mitotic arrest, and apoptotic cell death in the MDA-MB-231 triple-negative breast cancer cell line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!